Development of an Alfalfa SNP Array and Its Use to Evaluate Patterns of Population Structure and Linkage Disequilibrium

نویسندگان

  • Xuehui Li
  • Yuanhong Han
  • Yanling Wei
  • Ananta Acharya
  • Andrew D. Farmer
  • Julie Ho
  • Maria J. Monteros
  • E. Charles Brummer
چکیده

A large set of genome-wide markers and a high-throughput genotyping platform can facilitate the genetic dissection of complex traits and accelerate molecular breeding applications. Previously, we identified about 0.9 million SNP markers by sequencing transcriptomes of 27 diverse alfalfa genotypes. From this SNP set, we developed an Illumina Infinium array containing 9,277 SNPs. Using this array, we genotyped 280 diverse alfalfa genotypes and several genotypes from related species. About 81% (7,476) of the SNPs met the criteria for quality control and showed polymorphisms. The alfalfa SNP array also showed a high level of transferability for several closely related Medicago species. Principal component analysis and model-based clustering showed clear population structure corresponding to subspecies and ploidy levels. Within cultivated tetraploid alfalfa, genotypes from dormant and nondormant cultivars were largely assigned to different clusters; genotypes from semidormant cultivars were split between the groups. The extent of linkage disequilibrium (LD) across all genotypes rapidly decayed to 26 Kbp at r(2) = 0.2, but the rate varied across ploidy levels and subspecies. A high level of consistency in LD was found between and within the two subpopulations of cultivated dormant and nondormant alfalfa suggesting that genome-wide association studies (GWAS) and genomic selection (GS) could be conducted using alfalfa genotypes from throughout the fall dormancy spectrum. However, the relatively low LD levels would require a large number of markers to fully saturate the genome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pattern of Linkage Disequilibrium in Livestock Genome

Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...

متن کامل

HAPLOT: a graphical comparison of haplotype blocks, tagSNP sets and SNP variation for multiple populations

UNLABELLED Understanding of human variation relevant to association studies can benefit from population comparison, especially comparing populations in the same geographical region. Variations in linkage disequilibrium patterns, in tagSNP sets, and in SNP heterozygosities among populations can be used to infer the evolutionary pattern. We present here a win32 system based Perl/Tk application fo...

متن کامل

ARTICLE Linkage Disequilibrium between STRPs and SNPs across the Human Genome

Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to reco...

متن کامل

SNPpattern: A Genetic Tool to Derive Haplotype Blocks and Measure Genomic Diversity in Populations Using SNP Genotypes

The aftermath of the Human Genome Project has generated new revolutionary techniques and equipment such as high throughput measurement tools for collecting biological information. One notable tool is a microarray that can be used to genotype hundreds of thousands of single nucleotide polymorphisms (SNPs) in one run. This highthroughput SNP genotypes along with phenotypic measurements can be use...

متن کامل

Linkage disequilibrium mapping via cladistic analysis of single-nucleotide polymorphism haplotypes.

We present a novel approach to disease-gene mapping via cladistic analysis of single-nucleotide polymorphism (SNP) haplotypes obtained from large-scale, population-based association studies, applicable to whole-genome screens, candidate-gene studies, or fine-scale mapping. Clades of haplotypes are tested for association with disease, exploiting the expected similarity of chromosomes with recent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014